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Motivation

◮ The β-functions in QFT are known to depend on the renormalization scheme.

◮ In QFT’s with one coupling constant we can make the β-function 2-loop exact
(for example, in ϕ4 theory).

◮ In QFT’s with two or more couplings it is not known in general, whether and how
it is possible to achieve such a simple form.

◮ It is particularly interesting to study integrable deformations of 2-dimensional
sigma models, for example, η-deformed O(N) ones with two couplings.

◮ We know the β-function for 2-dimensional sigma models up to 4-loop order and
how it varies under scheme changes.

◮ For D = 2 target space there are much less different tensor structures and we
have a hope to obtain a particularly simple expression for the β-function in some
scheme.

◮ We know some conjectured all-loop metrics in a certain scheme for η- and 2-loop
ones for λ-deformed models (Hoare et al.’19), so it could be possible to find a
simple expression for higher-loop β-functions.
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β-function in the ϕ4 theory

◮ Consider the φ4 scalar QFT

L =
1

2
(∂µϕ)

2 − 1

2
m2ϕ2 − g

4!
ϕ4 .

◮ β-function in 4− ǫ dimensions (’t Hooft’72) is known up to 6-loop order
(Kompaniets et al.’16) in the minimal subtraction scheme (’t Hooft’73). The
expression at the 2-loop order

ġ = −β(g), β(g) = −ǫg + 3g2 − 17g3

3
+O(g4) .

◮ Change of regularization scheme can be effectively understood as a change of the
coupling

g → g̃(g) = g + ξ1g
2 + ξ2g

3 +O(g4) .

◮ The β-function transforms as the vector field

˙̃g =
∂g̃

∂g
ġ → β̃(g̃) =

(

∂g̃(g)

∂g

)

−1

β(g̃(g)) ,

where

ġ =
dg

dt

and t is the logarithm of the renormalization scale.
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Normal form of the β-function in the ϕ4 theory

◮ For the β-function, which starts from g2, corresponding to marginal perturbation,
one has

β(g) = A1g
2 + A2g

3 + A3g
4 +O(g5) →

→ β̃(g̃) = A1g̃
2 +A2g̃

3 + (A3 + A2ξ1 +A1(ξ
2
1 − ξ2))g̃

4 +O(g̃5) .

◮ The first two coefficients are scheme independent.

◮ By choosing

ξ1 =
A3

A2
, ξ2 = ξ21

we can make the β-function at the 3rd order to be 0.

◮ Tuning the renormalization parameters ξk, one can always find the normal form

of the β-function, i.e. the scheme, in which the β-function is 2-loop exact

β̃(g̃) = A1g̃
2 + A2g̃

3 .
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Sigma models in 2 dimensions

◮ We study 2-dimensional sigma models

S[X] =
1

4π

∫

Gij(X)∂aX
i∂aX

j d2σ .

◮ The metric Gij(X) also depends on some parameters treated as coupling
constants, which vary with the scale according to RG flow equation

Ġij +∇iVj +∇jVi = −βij(G) .

◮ The metric β-function βij(G) admits the covariant loop expansion

βij(G) = β
(1)
ij (G) + β

(2)
ij (G) + β

(3)
ij (G) + . . . ,

where L-th loop order β-function coefficient βL
ij belongs to the finite dimensional

space of tensors with given scaling properties.

◮ It is convenient to have in mind that the metric is proportional to the inverse of
the Planck constant, which implies the following scaling for basic tensors

Gij ∼ ~
−1 → Gij ∼ ~ , Γk

ij ∼ ~
0 , ∇i ∼ ~

0 , R l
ijk ∼ ~

0 , Rij ∼ ~
0 , R ∼ ~ .
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β-function of 2-dimensional sigma model
◮ The 1-loop β-function is proportional to the Ricci curvature

β
(1)
ij = Rij ,

and the corresponding RG equation is the celebrated Ricci flow equation.

◮ Higher loop coefficients β
(L)
ij have been calculated in the minimal subtraction

scheme: in 2 loops in (Friedan’80)

β
(2)
ij =

1

2
RiklmR klm

j .

◮ in 3 loops in (Graham’87, Foakes, Mohammedi’87)

β
(3)
ij =

1

8
∇kRilmn∇kR lmn

j − 1

16
∇iRklmn∇jR

klmn−

− 1

2
RimnkR

k
jpq Rmqnp − 3

8
RikljR

kmnpRl
mnp .

◮ Also the 4-loop result has been obtained in (Jack et al.’89).

◮ The higher loop coefficients β
(L)
ij for L > 1 are scheme dependent. They are

related by covariant metric redefinitions

Gij → G̃ij = Gij +
∞
∑

k=0

G
(k)
ij ,

where G
(k)
ij is of the order ~k.
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β-function for D = 2 sigma models

◮ The β-function for the SM with two-dimensional target space is significantly
simplified

β
(1)
ij

=
1

2
RGij ,

β
(2)
ij

=
1

4
R

2
Gij ,

β
(3)
ij

=

(

5

32
R

3
+

1

16

(

∇R
)2

)

Gij −
1

16
∇iR∇jR ,

β
(4)
ij

=

(

23

192
R

4
+

2 + ζ(3)

32
R

2
∇

2
R +

41 + 12ζ(3)

192
R
(

∇R
)2

+
1

192

(

∇
2
R
)2

+

+
1

192

(

∇i∇jR
)2

)

Gij −
ζ(3)

48
R

2
∇i∇jR −

25 + 8ζ(3)

192
R∇iR∇jR −

1

96

(

∇
2
R
)

∇i∇jR .

◮ Covariant metric redefinition is determined by several tensor structures at every
order of ~

G
(0)
ij = c1RGij ,

G
(1)
ij =

(

c2R
2 + c3∇2R

)

Gij + c4∇i∇jR ,

G
(2)
ij =

(

c5R
3 + c6

(

∇R
)2

+ c7R∇2R+ c8∇2∇2R
)

Gij+

+ c9∇iR∇jR+ c10R∇i∇jR+ c11∇i∇j∇2R

and so on.
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β-function for D = 2 sigma models in different schemes I

◮ Up to a diffeomorphism transformation after covariant redefinition metric satisfies
the RG flow equation

˙̃Gij + ∇̃iṼj + ∇̃j Ṽi = −β̃ij(G̃)

with some vector field Ṽi and transformed β̃ij .

◮ 1-loop β-function β
(1)
ij is obviously scheme-independent.

◮ Perturbation of the left hand side

˙̃Gij = Ġij + Ġ
(0)
ij + . . . = Ġij + c1(ṘGij +RĠij ) + . . . =

= Ġij +
c1

2
∆RGij + . . . = −1

2
RGij +

(

−1

4
R2 +

c1

2
∆R

)

Gij + . . .

◮ Right hand side takes the form

β̃ij(G̃) =
1

2
R̃G̃ij +

(

b̃
(2)
1 R̃2 + b̃

(2)
2 ∆̃R̃

)

G̃ij + b̃
(2)
3 ∇̃i∇̃jR̃+ . . . =

=
1

2
RGij +

(

b̃
(2)
1 R2 +

(

b̃
(2)
2 − c1

2

)

∆R
)

Gij + b̃
(2)
3 ∇i∇jR+ . . .

◮ Comparing two previous expressions, we find that b̃
(2)
1 = 1

4
, b̃

(2)
2 = 0 and

b̃
(2)
3 = 0, therefore 2-loop β-function β

(2)
ij is also scheme-independent.
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β-function for D = 2 sigma models in different schemes II
◮ Higher order contributions to the β-function depend on the scheme, starting from

the 3-loop order

β
(3)
ij =

[(

5

32
+

c1 − 2c2

4

)

R3 +

(

1

16
− c1 − 2c2

2
− (c21 + c3)

)

(

∇R
)2−

−(c21 + c3)R∇2R
]

Gij − 1

16
∇iR∇jR− c4

4
∇i∇j

(

3R2 + 2∇2R
)

.

◮ Let us choose the covariant redefinition parameters to be

c2 = − 1

16
+

c1

2
, c3 = − c21

2
.

◮ We found the combination of the scheme change parameters, for which the
β-functionup to the 4-loop order is given by

βij =

(

R

2
+

R2

4
+

3R3

16
+

5R4

32
+

2 + ζ3

64
∇2

(

R3 + 2R∇2R− 1

2
∇2R2

)

+

+ . . .)Gij −
(

1

16
+

5R

32
+ . . .

)

∇iR∇jR+ . . .

◮ One can notice that parts of this expression without ζ3 are the expansion of

RGij

2(1− R)
1
2

− 1

16(1 − R)
5
2

∇iR∇jR .
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“All-loop” “sausage” metric

◮ In (Fateev et al.’93) there was obtained the solution of 1-loop RG flow equation,
which was later identified as semiclassical η-deformed O(3) metric (Hoare et
al.’14) (also classically integrable (Lukyanov’12)).

◮ All-loop metric, however, in different scheme, was conjectured in (Hoare et
al.’19).

◮ The metric takes the form

ds2 =
2κ

~

(

1− ~κ cos2 θ
1−κ2 sin2 θ

)

dθ2 + cos2 θdχ2

1− κ2 sin2 θ
,

where the new couplings ~ and κ satisfy the following flow equations

~̇ = 0, κ̇ =
~(κ2 − 1)

2 ((1− ~κ)(1− ~κ−1))
1
2

,

and vector field has the form

V =
~

ρ

{

κ(κ2 − 1) sin 2θ

4(1 − κ2 sin2 θ)2
,

cos2 θ

1− κ2 sin2 θ

}

, ρ
def
=
√

(1− ~κ)(1− ~κ−1) .

◮ We note that differential equation for κ is uniformized by ρ

(

1− ρ− ~

1 + ρ− ~

)1−~
(

1 + ρ+ ~

1− ρ+ ~

)1+~

= e2~(t−t0) ,

which resembles the integral equation from (Fateev’19).
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“All-loop” λ model metric

◮ There exists a solution to the 1-loop RG flow equation without any isometries

ds2 =
2

~

κdp2 + κ−1dq2

1− p2 − q2
, where κ =

1− λ

1 + λ
.

◮ This metric is one-loop renormalizable with κ running according to the leading in
~ order of and the vector field given by

Vp =
p

1− p2 − q2
, Vq =

q

1− p2 − q2
.

◮ We propose an ~ completion which is also two-loop exact similar to the all-loop
“sausage” action

ds2 =
2

~

(
(

κ− ~
)

dp2 +
(

κ−1 − ~
)

dq2

1− p2 − q2
− ~

(

pdp+ qdq
)2

(

1− p2 − q2
)2

)

.

supplemented by the following vector field

Vp =
p
(

1−~κ

1−~κ−1

) 1
2

1− p2 − q2



1− ~

2κ

1−
(

1−κ2

1−~κ

)

q

1− p2 − q2



 , Vq = {p ↔ q, κ → κ−1} .

◮ Surprisingly, the parameter κ satisfies the same RG flow differential equation as
for the η-deformed model.
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UV limit of the “sausage” and λ model metrics

◮ We perform the following change of the variables and the coupling constants

sin θ = κ−1 tanh
x

2
, χ =

y

2
+

i

2
log

(

1− 1− κ2

1 + κ2
coshx

)

for “sausage” model ,

p2 + q2 = eiy ,
p2 − q2

p2 + q2
= cosh x for λ model .

◮ Then one has

ds2sausage = Adx2 +

(

A+
1

2

)

dy2 + B
(

ex(dx+ idy)2 + e−x(dx− idy)2
)

and

ds2λ =
1

1− e−iy
×

×



Adx2 +
1− A

A+ 1
2

e−iy

1− e−iy

(

A+
1

2

)

dy2 +B
(

ex(dx+ idy)2 + e−x(dx− idy)2
)



 .
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UV limit of the “sausage” and λ model metrics II

◮ It is convenient to rescale

x → x√
2A

, y → y√
2A+ 1

.

◮ Then we obtain for the sausage sigma model

ds2sausage =
1

2

(

dx2 + dy2
)

+

+
B

2A



e
x

√

2A

(

dx+ i

√
2A√

2A+ 1
dy

)2

+ e
−

x
√

2A

(

dx− i

√
2A√

2A+ 1
dy

)2




and for the λ-deformed sigma model

ds2λ =
1

2











1

1− e
−i

y
√

2A+1

dx2 +
1− 2A

2A+1
e
−i

y
√

2A+1

(

1− e
−i

y
√

2A+1

)2
dy2











+

+
B
2A

1− e
−i

y
√

2A+1



e
x

√

2A

(

dx+ i

√
2A√

2A+ 1
dy

)2

+ e
−

x
√

2A

(

dx− i

√
2A√

2A+ 1
dy

)2


 .
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UV limit of the “sausage” and λ model metrics III
◮ Coefficients A and B have the following t → −∞ expansion

A =
1− ~

2~
+O

(

e
2~(t−t0)

1−~

)

, B =
1− ~

2~
~

~

1−~ e
~(t−t0)

1−~ +O
(

e
3~(t−t0)

1−~

)

.

◮ New parameter together with an additional imaginary shift of y coordinate

b
def
=

√

1− ~

~
, y → y +

i(t − t0)

b2
.

◮ We derive the following UV limits

ds2sausage =
1

2

(

dx2 + dy2
)

+

+e
t−t0
b2

(

e
x
b

(

dx+
ib√

1 + b2
dy

)2

+ e−
x
b

(

dx− ib√
1 + b2

dy

)2
)

+O
(

e
3(t−t0)

b2

)

and

ds2λ =
1

2

(

dx2 + dy2
)

+e
t−t0
b2

(

e
x
b

(

dx+
ib√

1 + b2
dy

)2

+ e−
x
b

(

dx− ib√
1 + b2

dy

)2
)

+ e
t−t0
b2 e

−
iy√
1+b2

(

dx+
ib√

1 + b2
dy

)(

dx− ib√
1 + b2

dy

)

+O
(

e
3(t−t0)

b2

)

.
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“Cigar” metric
◮ UV limit of the λ metric

ds2 =
1

2















dx2

1− e
−

iy√
1+b2

+
1− b2

1+b2
e
−

iy√
1+b2

(

1− e
−

iy√
1+b2

)2
dy2















,

solves the conformal equation

βij(G)+2∇i∇jΦ = 0 with Φ = −1

2
log

(

1− e

iy√
1+b2

)

− 1

4(1 + b2)

(

1− e

iy√
1+b2

) .

◮ Exchanging x ↔ y and b ↔ i
√
1 + b2 and substituting x = b log(1− coth2 r) and

y = bϕ, we obtain the metric (b2 = 1/~)

ds2 =
2

~

(

(

1 +
~

cosh2 r

)

dr2 + tanh2 rdϕ2

)

.

◮ This metric is connected to the exact cigar metric (Dijkgraaf, Verlinde,
Verlinde’92)

ds2DVV =
2

~

(

dr2 +
1

coth2 r − ~

~+1

dϕ2

)

by simple covariant metric redefinition

(1− R)
1
2 ds2 = ds2DVV

(

ϕ → ϕ√
1 + ~

)

.
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QFT from screening charges

◮ We want to check whether the metric is consistent with the screening charges
corresponding to the η-deformed O(3) sigma model (Fateev et al.’93).

◮ Let us recall that the theory in question may be determined by the following set
of fermionic screenings

β12

1+2b2 1+2b2

−1−2b2

−1−2b2

β34

α1

α2 α3

α4

β23

β14

◮ By utilizing Cartesian coordinates as in (Litvinov, Spodyneiko’18) we can
parametrize the fermionic screening lengths as follows

α1 = bE1 + iβe1 , α2 = bE1 − iβe1 ,

α3 = −bE1 + iβe1 , α4 = −bE1 − iβe1 .

16/ 21



UV limit of QFT

◮ The model is defined by 4 fermionic screenings given by

Sk =

∮

e(αk·ϕ)dz .

◮ In addition, there are 4 dressed screenings, whose lengths are determined by the
formula

βij =
2(αi +αj)

(αi +αj)2

and which are given by

β12 =
E1

b
, β34 = −E1

b
, β13 = −i

e1

β
, β24 = i

e1

β
.

◮ To establish connection with the metric we can consider the gaussian action with
two dressed screenings in the deep UV limit. First, let us remember that the
screening charges are defined up to total derivative

Sij =

∮

dz((αi + λβij) · ∂ϕ)e(βij ·ϕ) .

◮ One can actually see that in the UV expansion of the η-deformed model there
appear the dressed screenings β12 and β34, while for the λ-deformed model we
have to also include β13.
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β-function of 2-dimensional supersymmetric sigma model

◮ The β-function is known up to 4 loops in the N = 1 case (Alvarez-Gaumé,
Freedman, Mukhi’81, Alvarez-Gaumé’81, Grisaru, van de Ven, Zanon’86) and up
to 5 loops in the N = 2 case (Grisaru, Kazakov, Zanon’87).

◮ In the minimal subtraction scheme up to 4 loops in the case of D = 2 target
space it is given by

βij =
R

2
Gij +

ζ3

96
∇2R3Gij +O(~5) .

◮ There exists the scheme redefinition

c2 = 0 , c3 = − c21
2

, c5 = 0 , c6 =
c31
3

+
c1c4

2
+

5ζ3

96
, c7 =

c31
3

+
5ζ3

96
,

c8 =
c31
6

+
ζ3

96
, c9 = −3c11 − 6c1c4 , c10 = −3c11 − 5c1c4 ,

which allows to eliminate the 4-loop contribution to the β-function.
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β-function of 2-dimensional supersymmetric sigma model II

◮ In that special scheme the β-function is given by

βij =
R

2
Gij +O(~5) .

◮ Therefore, in this scheme the metric and the vector field

ds2 =
2κ

~

dθ2 + cos2 θdχ2

1− κ2 sin2 θ
, V = ~

{

κ(κ2 − 1) sin 2θ

4(1 − κ2 sin2 θ)2
,

cos2 θ

1− κ2 sin2 θ

}

solve the RG flow equation up to 4 loops.

◮ It is plausible that for arbitrary dimension of the target space there also exists the
scheme with these properties.

◮ For example, this can be checked in the N = 2 case by switching to the
description in terms of Kähler potential. We can consider the β-function for the
Kähler potential K, which is betaK and much simpler as it is a scalar.

◮ It remains to interpret the scheme redefinitions in terms of the redefinitions of
Kähler potential K.

19/ 21



Conclusions and open problems

◮ We found the renormalization scheme, in which the expression for the 4-loop
β-function for D = 2 sigma models is particularly simple.

◮ It was shown to be connected to the β-function in the minimal subtraction
scheme in the first 4 loop orders by some covariant metric redefinition.

◮ We found the 4-loop solution to RG flow equation, corresponding to the η- and
λ-deformed O(3) sigma model, which was also shown to be consistent with the
screening charges defining this theory.

◮ The renormalization scheme in question possesses an interesting property that the
screenings do not receive counterterm corrections, which requires further
investigation.

◮ Found the “cigar” metric with one exponent solves the RG flow with some certain
dilaton field.

◮ Generalize the obtained result for higher dimensional sigma model target spaces.
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Thanks for your attention!
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