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Abstract
Knowledge-aware recommender systems incorporate side information to improve recommendation performance. The authors
of new algorithms are usually focused on developing new ideas behind the proposed methods and comparing their models
with existing knowledge-aware recommender models. Meanwhile, some commonly used state-of-the-art general top-n
recommender models are ignored as potential baselines. In this study, we compare previously proposed knowledge-based
recommender systems with simple and computationally effective recommender models (EASE and ItemKNN) that do not
use any additional information about users and items. Our results on three datasets show that claimed effect of using side
information in recommender systems is still questionable.
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1. Introduction
In recent years, knowledge-aware recommender systems
have gained great popularity and development. Most
of the approaches are based on knowledge graphs (KG-
based). Other types of knowledge-aware recommender
models are out of the scope of this work. A typical knowl-
edge graph contains two subgraphs. The first one is the
user-item graph, in which vertices correspond to users
and items. They are connected by edges that reflect inter-
actions between users and items. The second subgraph
contains additional information about users and items. It
has intersecting nodes with the first graph and may have
other additional vertices. Edges of the second subgraph
represent side information that connects some nodes of
the second subgraph. As a result, KG-based models not
only use interactions between users and items but also
enrich the models with various types of side informa-
tion. Such algorithms rely on collaborative signals and
additionally model other hidden causes of interactions.
For instance, a movie recommender model may recom-
mend film X because the target user prefers films of a
similar genre or likes other films from the same director.
In this example, the model cannot retrieve such causes
purely from interactions. Therefore, the use of knowl-
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edge graphs is reasonable and should improve the quality
of recommendations.

However, it is difficult to estimate the relative gain
from the use of additional information. In the field of rec-
ommender systems, there are no standard testing proto-
cols, mandatory baselines for comparison with new algo-
rithms, and unified quality ranking metrics. Researchers,
in particular, use a variety of methods to split data for
training and testing samples [1]. Ranking metrics are fre-
quently computed for recommendation lists of differing
𝑘 lengths [2]. All this leads to the fact that the results
of models on the same metrics and datasets may differ
from paper to paper. Therefore, it is impossible to say un-
equivocally about the effectiveness of existing KG-based
state-of-the-art models.

Moreover, when the authors propose a new KG-based
model they often compare it only with other KG-based
models, or with weak conventional top-n recommender
baselines. We have found that some of the matrix
factorization-based approaches are often used to demon-
strate the superiority of using knowledge graphs. How-
ever, according to [2], well-tuned baselines such as
widely-known ItemKNN [3], graph-based models with-
out additional information, and even linear models can
outperform deep learning approaches under the same
task. Additionally, according to benchmarks [4], simple
baselines are computationally effective and often more
scalable to real-world applications. Thus, the benefit of
using knowledge graphs in recommender systems should
be further studied.

In this study, we compare highly cited KG-based mod-
els with computational effective collaborative filtering
(CF-based) models, namely ItemKNN and EASE [5]. The
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contributions of this paper can be summarized as follows:

• We aggregated information about datasets, rank-
ing metrics, and evaluation strategies. For exper-
iments, we included baselines for 12 graph-based
recommender models (8 of them use knowledge
graphs) published from 2016 to 2020. Also, we
discuss some methodological issues in the evalu-
ation of KG-based models.

• We conducted experiments on three real-world
datasets with hyperparameters tuning both for
baselines and KG-based models. Our study sheds
light on the questionable recommendation quality
of KG-based models.

2. Related work

2.1. Graph-based models
There are approaches that use the graph structure of
interactions without additional information. The idea
of exploiting only user-item graphs for recommenda-
tion is researched for a long time. Users and items are
represented as nodes and interactions between them as
edges. Early approaches like ItemRank [6], P3𝛼 [7], and
P3𝛽 [8] utilize random walks to propagate user prefer-
ences. Lately, graph neural networks were applied to
retrieve high-order connections between nodes and re-
trieve non-trivial collaborative signals. To do this, such
models as PinSage [9], GC-MC [10], and NGCF [11] are
developed based on graph convolution operation. Re-
cently, simplified versions of Graph Convolution Net-
works (GCN) were proposed. For example, the authors
of LightGCN [12] removed nonlinearities and collaps-
ing multiple weight matrices and outperformed previous
state-of-the-art NGCF [11]. Lately, researchers presented
SGL [13] with a self-supervised task and additional data
augmentation.

2.2. KG-based models
Models with external knowledge can be divided into 3
main groups: embedding-based (KGE), path-based, and
hybrid methods [14].

Embedding-based methods use information from the
knowledge graph to enrich the representation of users
and items. As a rule, themain idea of suchmodels is based
on the integration of standard collaborative filtering and
embeddings from the knowledge graph. For example,
CKE [15] combines various types of additional data about
items: structural, textual, and visual information. All
representations are then aggregated together to calculate
final recommendations. In KTUP [16] the researchers
do a graph completion task. MKR [17] model connects
two tasks - constructing a recommender system and a

vector representation of a KG, that allows solving them
simultaneously in multitasking learning mode.

Path-based approaches exploit the idea that similar en-
tities in a graph are connected by close relationships. For
example, PER [18] treats KG as a heterogeneous informa-
tion network and extracts latent features frommeta-paths
of varying length and nature to represent heterogeneous
relationships between users and elements. HeteRec [19]
leverages the meta-path similarities to enrich the user-
item interaction matrix. However, the first path-based
approaches involved themanual formation of meta-paths,
which led to sub-optimal results and limited their use for
different recommendation scenarios.

In [20], the authors proposed combining KGE and path-
based approaches into the RippleNet model. The general
idea of the method is that the user’s embedding is formed
from the embeddings of items with which the user inter-
acted in the past, as well as from their neighbors on a
graph with a given depth. Other examples of hybrid mod-
els are KGCN [21], where the representation of the object
is formed by aggregating the embeddings. In KGNNLS
[22] authors prove that label smoothness regularization
is equivalent to the label propagation problem and use
a leave-one-out loss to evaluate the importance of each
relationship type to the user. KGAT [23] model uses the
attention mechanism to distinguish the importance of
the influence of different neighbors.

2.3. Surveys of KG-based RecSys models
There are a few comprehensive surveys about graphs-
based recommender models. In paper [24], researchers
provide a comprehensive overview of graph-based mod-
els for recommendations. Recent work [25] analyzes
existing work in KG-based recommendations and out-
lines future directions. But this paper does not contain
independent experiments with well-tuned collaborative
filtering baselines. Both papers do not include extra ex-
periments with tuning hyperparameters of baselines. Al-
though there are a lot of evaluation research studies with
a comparison of conventional top-N recommendation
models [2, 26, 27], there are no such articles on KG-based
models. To the best of our knowledge, we are the first
to provide experiments with a wide range of KG-based
models and compare them with strong CF-based base-
lines.

3. Experiments
A typical knowledge graph can be divided into two sub-
graphs. The first one is a user-item graph, gathered from
interaction data. And the second subgraph represents
additional knowledge. To study the performance of using
additional information in recommender models, we are



Table 1
Graph-based recommender models with or without using side information. Non-graph baselines are in bold and target
models baselines are underlined. A bipartite graph 𝐺1 is defined as a set of triplets {(𝑢, 𝑦𝑢𝑖, 𝑖) 𝑢 ∈ 𝑈 , 𝑖 ∈ 𝐼 }, where 𝑈 , 𝐼 are sets
of users and objects, respectively vertices, and connections 𝑦𝑢𝑖 represent interactions. In the User-Item graph, in addition to
interactions, vertices with external features of the item are added.

Model Year #citations* Datasets Baselines Metrics Graph Motivation

Models with bipartite user-item graph

NGCF [11] 2019 797
Gowalla,
Yelp2018,

Amazon-Books

MF, NeuMF,
CMN, HOP-Rec,
GC-MC, PinSage

Recall@20,
NDCG @20 Bipartite

High-order embedding
propagation

DGCF [28] 2020 91
Gowalla,
Yelp2018,

Amazon-Books

MF, GC-MC,
NGCF, DisenGCN,

MacridVAE

Recall@20,
NDCG @20 Bipartite Disentangled representation

LightGCN [12] 2020 492
Gowalla,
Yelp2018,

Amazon-Books

NGCF, Mult-VAE,
GRMF

Recall@20,
NDCG @20 Bipartite

Without complex
operations and
non-linearity

SGL [13] 2021 59
Yelp2018,

Amazon-Books,
Alibaba-iFashion

NGCF, LightGCN,
Mult-VAE,
DNN+SSL

Recall@20,
NDCG @20 Bipartite Self-supervision

KGE models

CKE [15] 2016 941
MovieLens-1M
IntentBooks

BPRMF, BPRMF+TransE,
PRP, PER, LibFM, CMF, CTR

BPRMF+SDAE

MAP@K,
Recall@K

K: 20, 40, 60, 80, 100
Item

Structural, textual,
visual embeddings + CF

CFKG [29] 2018 181 Amazon
BPR, BPR_HFT, VBPR,
DeppCoNN, CKE, JRL

Precision, Recall,
HR, NDCG

K:10
User-Item

Heterogenous user-item
knowledge graph

RippleNet [20] 2018 471
MovieLens-1M
Book-Crossing
Bing-News

CKE, SHINE, DKN,
PER, LibFM + TransR,

Wide&Deep

Precision@K,
Recall@K, F1@K

K: 1, 2, 5, 10, 20, 50, 100

Item for
each user Preference propagation

KGCN [21] 2018 280
MovieLens-20M
Book-Crossing

Last.FM

SVD, LibFM,
LibFM + TransE,

PER, CKE, RippleNet

Recall@K
K: 1, 2, 5, 10, 20, 50, 100

Item for
each user Graph Convolutional

MKR [17] 2019 214

MovieLens-1M
Book-Crossing

Last.FM
Bing-News

PER, CKE, DKN,
RippleNet,

LibFM + TransR,
Wide&Deep

Recall@K
Precision@K

K: 2, 5, 10, 20, 50
Item

Multi-task learning,
cross&compress unit

Hybrid graph-based models

KTUP [16] 2019 212 MovieLens-1M
FM, BPRMF,
CFKG, CKE,

CoFM

Recall@10,
Precision@10
F1 score@10,
Hit ratio@10,
NDCG @10

Item
Graph completion,

preference translation

KGAT [23] 2019 605
Amazon-Books

Last-FM
Yelp2018

FM, NFM, CKE,
CFKG, MCRec,

RippleNet, GC-MC

Recall@20,
NDCG @20 Bipartite + item Attention

KGNN-LS [22] 2019 205

MovieLens-20M,
Book-Crossing,

Last.FM,
Dianping-Food

SVD, LibFM,
LibFM+TransE,

PER, CKE, RippleNet

Recall@K
K: 2, 10, 50, 100

Item for
each user Label smoothing

*The data is current as of 2022-03-25.

firstly focused on graph models without features. Then,
we move on to models with additional information.

Thus we perform experiments to answer the following
research questions:

1. RQ1: Does the graph structure help to better cap-
ture the collaborative signal from the interaction
data?

2. RQ2: Do graph-based models that use additional
external information perform better than models
without features?

3.1. Datasets
We consider three real-world datasets from different areas
of application and varying sparsity degrees.

MovieLens-1M1: This dataset contains ratings for
1https://grouplens.org/datasets/movielens/1m/

movies from 1 to 5. We use 20-core filtering and con-
sider any grade as positive feedback to achieve a lesser
degree of sparsity of the interaction matrix.

Amazon-Books2: This dataset contains information
about the ratings of books purchased by Amazon users.
30-core filtering is used to ensure the dataset’s quality
and match the available computing resources.

TTRS [30] is a real dataset of financial transactions
of 50,000 randomly selected clients of Tinkoff bank, cov-
ering spending in all areas of life - from buying food
and household appliances to paying for various forms
of leisure. Users with less than 10 interactions were ex-
cluded.

2http://jmcauley.ucsd.edu/data/amazon/



Table 2
Performance comparison on three datasets. The best model in each semantic group is in bold, the models are sorted in
ascending chronological order. The best model for each dataset and metric pair is in green, the second best model in violet,
and the third best model in blue.

Method
MovieLens-1M TTRS Amazon-books

Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10

Pop 0.072 0.126 0.233 0.134 0.012 0.011
ItemKNN [3] 0.163 0.126 0.322 0.240 0.149 0.149
EASE [5] 0.205 0.314 0.389 0.290 0.158 0.157

NGCF [11] 0.172 0.268 0.343 0.254 0.082 0.076
DGCF [28] 0.172 0.265 0.345 0.254 0.087 0.082
LightGCN [12] 0.173 0.269 0.352 0.262 0.088 0.083
SGL [13] 0.179 0.271 0.354 0.264 0.103 0.097

CKE [15] 0.165 0.263 0.349 0.257 0.077 0.072
CFKG [29] 0.154 0.241 0.324 0.240 0.067 0.062
RippleNet [20] 0.121 0.203 0.301 0.222 0.036 0.033
KGCN [21] 0.146 0.234 0.316 0.235 0.051 0.046
MKR [17] 0.139 0.224 0.331 0.246 0.047 0.043

KTUP [16] 0.159 0.251 0.331 0.244 0.061 0.056
KGAT [23] 0.169 0.273 0.342 0.254 0.076 0.071
KGNNLS [22] 0.146 0.235 0.317 0.234 0.052 0.047

3.2. Experimental Settings
Evaluation metrics. We use the standard metrics
NDCG@k and Recall@k averaged over the entire sample
to assess the recommendations’ quality. Due to paper
space limitations, we report metrics only with k = 10.

Evaluation protocol. For each dataset, 80% of the
interactions for each user were randomly selected as the
training sample. We also leave 10% of interactions for
validation and 10% for the test set. One negative example
is randomly selected from a uniform distribution for each
interaction during the training phase. At the stage of
validation and testing, we rank positive examples relative
to all items in the dataset.

Baselines. Three popular non-graph models based on
statistics were chosen as baselines:

1. Pop is a recommendation of the most popular
items in the dataset. Popularity is calculated by
the frequency of the object’s occurrence among
all interactions;

2. ItemKNN [3] – an item-based approach to rec-
ommending objects that are close in the cosine
similarity measure;

3. EASE [5] is a state-of-the-art linear model based
on the idea of an autoencoder. It has an analytical
solution for a convex loss function.

Hyperparameter Fitting. To review the current
state of KG-based models, we took the popular open

library for building recommender systems RecBolee3 [4].
We took all the graph models implemented in Recbole
of version 1.0.0 and analyzed the relevant articles for
the datasets, metrics, baselines, data preprocessing, and
pipeline for building recommender systems. Table 1
presents the summary statistics.

We found a few issues with evaluating KG-based mod-
els and consequently claimed the value of additional
knowledge for recommendation quality.

Firstly, the authors include matrix factorization (BPR,
SVD) and factorization machines (FM, LibFM) as collabo-
rative filtering baselines. Meanwhile, KNN-based, VAE-
based, and Item-based models are ignored. Moreover,
MKR [17] and RippleNet [20] even are not compared
with CF baselines. Therefore, we cannot conclude that
KG-based models outperform algorithms based only on
user-item interactions.

Secondly, researchers from most papers do not prop-
erly tune hyperparameters of CF-based models. Accord-
ing to [2], it leads to the weak performance of baselines
and possible superiority of proposed KG-based methods.

To fill this gap, we conduct comprehensive experi-
ments with tuning both baselines and KG-based models.

Implementation details. All calculations were per-
formed on the Tesla V100 GPU, experiments were car-
ried out on the basis of the RecBole framework. For all
models, we tune hyperparameters with random greed-
search optimizing NDCG@10 within 24 hours for each

3https://github.com/RUCAIBox/RecBole



Table 3
Training time comparison on the MovieLens-1M dataset.

Best model Overall tuning

Sec./epoch GPU RAM, GB
Model #epochs

Train Eval
Overall training

time, min. Train Eval
#hparams/
greed size

Tuning
time, h.

Pop 1 1,95 6,66 0,14 0,00 0,00 - 0,0
ItemKNN 1 1,68 12,20 0,23 0,00 0,00 24/24 0,5
EASE 1 1,65 8,68 0,17 0,00 0,00 6/6 0,7

NGCF 93 23,32 5,79 45,12 0,31 0,32 115/2400 24
DGCF 168 139,22 5,93 406,42 4,92 4,92 15/180 24
LightGCN 262 7,58 5,73 58,12 0,17 0,17 80/80 24
SGL 92 29,35 5,64 53,65 0,41 0,41 79/100 24

CKE 239 8,55 5,91 57,60 0,39 0,39 60/60 19,3
CFKG 83 3,98 10,05 19,41 0,17 0,17 60/60 15
RippleNet 10 30,47 9,06 6,59 0,99 1,00 83/100 24
KGCN 66 6,83 11,51 20,17 0,16 0,18 5/5 5
MKR 70 10,91 14,43 29,56 0,44 0,56 96/180 24

KTUP 212 8,64 13,06 76,67 0,18 0,18 101/240 24
KGAT 98 27,13 5,64 53,52 1,18 2,72 89/375 24
KGNNLS 66 12,82 11,69 26,96 0,19 0,19 5/5 5,1
”Overall training time, min.” = (”Train sec./epoch” + ”Eval sec./epoch”) * ”#epochs” / 60

”#hparams” - number of randomly iterated hyperparameters from the grid

”Tuning time” - time spent iterating hyperparameters from the grid (maximum - 24 hours)

model. Hyperparameter ranges were taken from [4]. Our
experiments can be reproduced using our open-source
repository4. Model launch code is available there, as well
as hyperparameter grids and fitted optimal values.

3.3. Results
Table 2 presents NDCG@10 and Recall@10 values in our
experiments.

RQ1: Graph models in all datasets outperform the Pop
baseline but demonstrate poor performance compared
to the state-of-the-art non-graph model EASE [5] and
ItemKNN [3] on Amazon Books. Although the EASE
model was published in 2019 and could not be used as a
baseline in most models, the authors of the DGCF [28],
LightGCN [12], and SGL [13] should have considered
including it, as well as ItemKNN [3], in their analysis.
Even though EASE and ItemKNN use less information
based on interaction data alone, they are often able to
model a behavioral signal better than knowledge graph
models and are easier to implement.

RQ2: Approaches with a bipartite user-item graph
that are not enhanced with additional connections with
item characteristics demonstrated the next best quality
after EASE. Despite the fact that both models with a bi-
partite user-item graph and a knowledge graph incorpo-
4https://github.com/kg-based-recsys-eval/kg_based_recsys_eval

rate information on interactions, the experimental results
suggest that KG-models capture the collaborative signal
worse. Along with the model’s complication, it may be
anticipated that more emphasis is devoted to the KG part
of the learning process and less to the collaborative one.
This indirectly verifies the advantages of the most basic
CKE [15] KG-model with a distinct CF part.

Table 3 displays training time and memory costs for all
models on theMovieLens-1M dataset with optimal hyper-
parameters. It can be shown that all baseline models do
not require the usage of a GPU and are trained in less than
one minute. The inclusion of graphs in models increases
training time by more than 40 times. RippleNet, for exam-
ple, had the quickest training time on the MovieLens-1M
dataset, with a result of 6.6 minutes, and the longest was
DGCF, which trained on the Amazon-Books dataset for
more than 8 hours.

4. Conclusion
In this study, we examined the quality and required re-
sources for training the developed KG-based recommen-
dation models from different perspectives. Furthermore,
we uncovered a fewmethodological issues that contribute
to the stated effectiveness of KG-based models, which
may be addressed by incorporating simple linear base-



lines and adjusting its hyperparameters in the experi-
mental set-up. Our comprehensive experiments on three
real-world datasets reveal that a basic linear model EASE
outperforms any KG-based approach. Moreover, the
early-adopted ItemKNN approach shows better quality
in making recommendations than some graph models on
several datasets. Our findings indicate that researchers
should include and adjust such simple baselines in their
experiments and compare new algorithms to them.
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