Scientists Develop New Method to Detect Motor Disorders Using 3D Objects

Researchers at HSE University have developed a new methodological approach to studying motor planning and execution. By using 3D-printed objects and an infrared tracking system, they demonstrated that the brain initiates the planning process even before movement begins. This approach may eventually aid in the assessment and treatment of patients with neurodegenerative diseases such as Parkinson’s. The paper has been published in Frontiers in Human Neuroscience.
When a person picks up a cup or fastens a button, the brain plans the movement in advance—a process known as motor planning. This is especially important for complex actions, such as when an object must not only be lifted but also rotated. In patients with stroke or Parkinson’s disease, this mechanism is often impaired, making it essential to understand its structure for effective rehabilitation.
In earlier studies, researchers relied on reactions to visual stimuli, EEG, or MRI to investigate motor planning. However, these methods could not precisely distinguish between the planning phase and the execution of movement. Moreover, most experiments involved familiar objects, making it difficult to rule out the influence of habits and prior associations.
Scientists at the HSE Centre for Cognition and Decision Making have developed a new methodological framework for studying motor planning in the brain. In the experiment, 21 participants performed a series of tasks involving the grasping and placement of 3D-printed objects. Each of the four objects was an abstract geometric shape, unrelated to everyday items, thereby eliminating the influence of habit. The task required participants to grasp an object, rotate it if necessary, and place it precisely onto a corresponding cardboard plate.
In the experiment, four rotation angles were tested: 0°, 90°, 180°, and 270°. High-precision motion tracking was carried out using infrared cameras. Each movement was segmented into phases, from the moment the occlusion glasses opened to the completion of object placement. This approach enabled the researchers to examine in detail how motion parameters change as task complexity increases.

The study found that rotation had a significant impact on motion planning: movements involving rotation had longer initiation times, larger grasp apertures, and longer wrist trajectories compared to non-rotated movements. Symmetrical 180° rotations were executed faster than asymmetrical 90° and 270° rotations. These results indicate that not only task complexity but also movement geometry influences planning. Thus, motor planning is not merely a simple response to a stimulus but a distinct movement phase shaped by the demands of the task.
Matteo Feurra
The developed methodological framework may prove valuable not only for basic research but also for clinical practice. Clearly separating the planning and execution phases can lead to more accurate diagnoses and more effective rehabilitation for patients with motor disorders after stroke or other neurological conditions. 'The infrared motion tracking system fits into a portable case and can be used in clinics, sports science, or field research. Most importantly, it enables the detection of subtle delays in motor planning, which may serve as early indicators of neurological disorders,' explains Matteo Feurra, Leading Research Fellow at the HSE Centre for Cognition and Decision Making and one of the authors of the study.
The study was carried out within the framework of the HSE Basic Research Programme.
See also:
Solvent Instead of Toxic Reagents: Chemists Develop Environmentally Friendly Method for Synthesising Aniline Derivatives
An international team of researchers, including chemists from HSE University and the A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences (INEOS RAS), has developed a new method for synthesising aniline derivatives—compounds widely used in the production of medicines, dyes, and electronic materials. Instead of relying on toxic and expensive reagents, they proposed using tetrahydrofuran, which can be derived from renewable raw materials. The reaction was carried out in the presence of readily available cobalt salts and syngas. This approach reduces hazardous waste and simplifies the production process, making it more environmentally friendly. The study has been published in ChemSusChem.
How Colour Affects Pricing: Why Art Collectors Pay More for Blue
Economists from HSE University, St Petersburg State University, and the University of Florida have found which colours in abstract paintings increase their market value. An analysis of thousands of canvases sold at auctions revealed that buyers place a higher value on blue and favour bright, saturated palettes, while showing less appreciation for traditional colour schemes. The article has been published in Information Systems Frontiers.
New Method for Describing Graphene Simplifies Analysis of Nanomaterials
An international team, including scientists from HSE University, has proposed a new mathematical method to analyse the structure of graphene. The scientists demonstrated that the characteristics of a graphene lattice can be represented using a three-step random walk model of a particle. This approach allows the lattice to be described more quickly and without cumbersome calculations. The study has been published in Journal of Physics A: Mathematical and Theoretical.
Scientists Have Modelled Supercapacitor Operation at Molecular and Ionic Level
HSE scientists used supercomputer simulations to study the behaviour of ions and water molecules inside the nanopores of a supercapacitor. The results showed that even a very small amount of water alters the charge distribution inside the nanopores and influences the device’s energy storage capacity. This approach makes it possible to predict how supercapacitors behave under different electrolyte compositions and humidity conditions. The paper has been published in Electrochimica Acta. The study was supported by a grant from the Russian Science Foundation (RSF).
Designing an Accurate Reading Skills Test: Why Parallel Texts are Important in Dyslexia Diagnosis
Researchers from the HSE Centre for Language and Brain have developed a tool for accurately assessing reading skills in adults with reading impairments. It can be used, for instance, before and after sessions with a language therapist. The tool includes two texts that differ in content but are equal in complexity: participants were observed to read them at the same speed, make a similar number of errors, and understand the content to the same degree. Such parallel texts will enable more accurate diagnosis of dyslexia and better monitoring of the effectiveness of interventions aimed at addressing it. The paper has been published in Educational Studies.
HSE University Launches Development of Domestic 6G Communication Technologies Based on Sub-Terahertz Microelectronics
HSE University has launched a large-scale research and engineering initiative to develop domestic technologies for next-generation 6G communication systems. The project is being carried out by the team of the Strategic Technological Project 'Trusted 6G Communication Systems Technology Suite' implemented under the Priority 2030 programme.
Internal Clock: How Heart Rate and Emotions Shape Our Perception of Time
Our perception of time depends on heart rate—this is the conclusion reached by neuroscientists at HSE University. In their experiment, volunteers watched short videos designed to evoke specific emotions and estimated each video's duration, while researchers recorded their heart activity using ECG. The study found that the slower a participant's heart rate, the shorter they perceived the video to be—especially when watching unpleasant content. The study has been published in Frontiers in Psychology.
Scientists Identify Personality Traits That Help Schoolchildren Succeed Academically
Economists from HSE University and the Southern Federal University have found that personality traits such as conscientiousness and open-mindedness help schoolchildren improve their academic performance. The study, conducted across seven countries, was the first large-scale international analysis of the impact of character traits on the academic achievement of 10 and 15-year-olds. The findings have been published in the International Journal of Educational Research.
Intellectual Capital in the Face of Shocks: Russia and Iran Explore Internationalisation
In today's issue of Schola, Mariya Molodchik, Senior Research Fellow at the International Laboratory of Intangible-Driven Economy and Professor at the School of Economics and Finance at HSE University’s Campus in Perm, discusses a joint project with Iran University of Science and Technology, titled 'Internationalization of Companies from Developing Countries: The Role of Intellectual Resources in Response to Exogenous Shocks.'
HSE Researchers Introduce Novel Symmetry-Aware Neural Network Architecture
Researchers at the HSE Laboratory for Geometric Algebra and Applications have developed a new neural network architecture that can accelerate and streamline data analysis in physics, biology, and engineering. The scientists presented their solution on July 16 in Vancouver at ICML 2025, one of the world's leading conferences on machine learning. Both the paper and the source code are publicly available.


