• A
  • A
  • A
  • АБВ
  • АБВ
  • АБВ
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта

Рекомендательные системы: новые алгоритмы и современная практика

Рекомендательные системы: новые алгоритмы и современная практика

© iStock

Институт ИИ и цифровых наук ФКН НИУ ВШЭ провел конференцию, посвященную передовым технологиям рекомендательных систем.  Мероприятие прошло в атмосфере активного обмена опытом между ведущими специалистами отрасли и позволило участникам ознакомиться с последними достижениями и практическими решениями в области разработки рекомендательных моделей.

Конференция собрала экспертов, занимающихся разработкой рекомендательных систем — перспективной технологии, находящей применение как в академической среде, так и в индустрии. Организатором конференции выступила Научно-учебная лаборатория (НУЛ) матричных и тензорных методов в машинном обучении под руководством Максима Рахубы.

Евгений Фролов

Евгений Фролов, старший научный сотрудник лаборатории, руководитель группы «Технологии персонализации» AIRI, отметил: «Вторая итерация конференции по рекомендательным системам объединила сообщество специалистов из индустрии и академии и показала, что у нас есть крепкая техническая база и растущий интерес к области. Программa вышла разноплановой: от свежих исследований, поданных на ведущую конференцию по рекомендательным системам RecSys 2025, до подробных разборов продакшен-архитектур крупных компаний. Интересным вышел и круглый стол: обсудили, что хорошо отлаженные одностадийные решения могут стать первым шагом к единой LLM-ориентированной рекомендательной парадигме. Для меня главный итог — активно формируется сообщество экспертов из индустрии и академии, где можно честно проверять гипотезы на реальных данных и сразу понимать их ценность для бизнеса и науки».

© Высшая школа экономики

В рамках обучающего семинара научные сотрудники AIRI Глеб Мезенцев и Даниил Гусак представили подробный обзор современных подходов к созданию масштабируемых последовательных рекомендательных систем. Участники узнали о новейших методиках построения эффективных конвейеров обработки больших объемов данных и тонкостях внедрения рекомендательных решений в реальные бизнес-процессы.

Сергей Ермилов, старший разработчик (VK AI), рассказал о результатах исследований влияния рекламных интеграций на эффективность рекомендательных сервисов и успешных подходах к релевантности контента и доходности рекламной деятельности.

Руслан Исрафилов, лидер команды исследований рекомендательных систем Сбера, представил доклад на тему «Следующий шаг эволюции AI: мультиагентные системы на базе LLM». Его выступление было сосредоточено на преимуществах интеграции мультиинтеллектуальных агентов для улучшения точности рекомендаций и понимания поведения пользователей.

Марина Ананьева

Марина Ананьева, руководитель направления RecSys НУЛ матричных и тензорных методов в машинном обучении, рассказала о переходе от классических пакетных методов обучения к онлайн-моделям рекомендаций. Она представила практические кейсы перехода на онлайн-обучение, подчеркнув повышение скорости адаптации моделей к изменениям предпочтений аудитории.

Алексей Васильев, исполнительный директор по исследованию данных Sber AI Lab, осветил важность правильной подготовки данных для построения качественных рекомендательных систем. Его доклад охватывал вопросы выбора архитектуры модели, оптимизации тренировочных процессов и интерпретации результатов работы алгоритмов. «В конференции принимали участие специалисты ведущих российских компаний. Многих выступающих я знаю лично, приятно было снова встретиться, — говорит Алексей Васильев. — Прекрасные разнообразные доклады, как индустриальные, так и научные, а также постерная сессия сделали мероприятие очень интересным. Здорово, что обсуждения продолжались и во время перерывов, еще раз подтвердив, что тема рекомендаций сейчас очень актуальна и востребована. Мне кажется, конференция удалась».

Евгений Фролов в рамках своего выступления предложил инновационный подход к повышению эффективности рекомендательных систем путем динамического изменения структуры внутренних представлений данных. Предложенный метод позволяет значительно повысить качество рекомендаций и снизить вероятность ошибок. «На конференции я представил нашу новую статью, в которой предложен self-supervised-подход к обучению рекомендательных моделей. Мы адаптировали метод Barlow Twins из области компьютерного зрения для transformer-архитектур рекомендаций. В частности, помимо повышения качества предсказаний, мы впервые выявили эффект адаптивного коллапса представлений: в зависимости от структуры пользовательских предпочтений алгоритм сам регулирует степень разнообразия выдачи. В наборах данных без явных кластеров вкусов он генерирует широкий спектр рекомендаций, а в сценариях со строго выраженными, специфическими предпочтениями — концентрируется на наиболее релевантных товарах, обеспечивая более точный выбор, чем существующие методы», — рассказал Евгений Фролов.

© Высшая школа экономики

Завершилась конференция постерной сессией в атриуме корпуса университета на Покровском бульваре, в рамках которой участники обсудили представленные исследования в неформальной обстановке и обменялись мнениями относительно новых направлений развития рекомендательных технологий.

Конференция по рекомендательным системам проводится в НИУ ВШЭ во второй раз и становится важной площадкой для обсуждения научных достижений и технологических новшеств в сфере искусственного интеллекта и цифровой экономики, способствуя развитию индустрии рекомендательных систем и формированию сообщества профессионалов нового поколения.

Вам также может быть интересно:

НИУ ВШЭ стал абсолютным лидером рейтинга вузов по подготовке кадров для ИИ

Альянс в сфере искусственного интеллекта опубликовал обновленный рейтинг вузов по качеству подготовки специалистов в области ИИ. В него вошли 203 российских университета из 68 регионов. Высшая школа экономики первой получила наивысшую категорию А++.

ВШЭ и МТС будут вместе бороться с дипфейками и научат искусственный интеллект создавать новое видео под запросы пользователей

НИУ ВШЭ и компания МТС Web Services (MWS) объявили о запуске серии совместных исследовательских работ в области технологий искусственного интеллекта, направленных на развитие инновационных решений в сфере кибербезопасности, мультимодальной генерации контента и анализа больших данных. Основным исполнителем проекта является Московский институт электроники и математики им. А.Н. Тихонова НИУ ВШЭ при общей координации Центра искусственного интеллекта ВШЭ.

В НИУ ВШЭ запущены стратегические технологические проекты

Стратегические технологические проекты Высшей школы экономики реализуются в интересах достижения целевой модели развития университета и предусматривают формирование пула инновационных продуктов и услуг. Они сформированы по трем направлениям: социально-экономическое и научно-технологическое прогнозирование, технологии связи 6G и искусственный интеллект.

11 вузов России стали участниками проекта ВШЭ и «Яндекса» по применению ИИ при подготовке дипломных работ

Эксперты «Яндекс Образования» и факультета компьютерных наук НИУ ВШЭ научили студентов и научных руководителей использовать нейросеть YandexGPT в трудоемких задачах — для анализа источников, структурирования информации, визуализации данных и работы с текстом в процессе подготовки дипломов.

Ростех и Вышка стали партнерами в сфере инженерной подготовки и научных исследований

Госкорпорация Ростех и Высшая школа экономики заключили соглашение о стратегическом партнерстве в сфере науки и образования. Документ направлен на проведение совместных исследований, подготовку высококвалифицированных кадров и формирование научно-технического задела в интересах высокотехнологичных отраслей России. Кроме того, совместно с московской школой № 58 будет вестись профориентация школьников по направлениям инженерии, ИТ и кибербезопасности.

В Вышке пройдет Международная школа БРИКС: Новое поколение

Открыта регистрация на Международную школу БРИКС: Новое поколение — один из ведущих международных образовательных проектов, ориентированных на молодых лидеров, интересующихся повесткой глобального развития и сотрудничества в рамках БРИКС.

НИУ ВШЭ укрепляет отношения с Пекинским университетом

21 июля в Высшей школе экономики побывала делегация Пекинского университета в составе сорока человек — студентов, преподавателей, административных сотрудников во главе с исполнительным проректором Пекинского университета, директором Высшей школы Пекинского университета в Шэньчжэне Чжан Цзинем. Руководители двух университетов обсудили направления дальнейшего сотрудничества, а представители трех факультетов НИУ ВШЭ провели рабочие встречи с китайскими студентами.

НИУ ВШЭ объединил ученых на международной школе по ИИ в Шанхае

В начале июля в Шанхае проходил Международный летний институт по исследованиям искусственного интеллекта в образовании, организованный Инобром НИУ ВШЭ совместно с Восточно-китайским педагогическим университетом. Более 50 молодых исследователей и ключевых спикеров из девяти стран — от России и Китая до Канады и Сингапура — собрались, чтобы обменяться последними результатами своей работы и построить новые международные партнерства.

«Мы близки к практическому применению системы бесстимульного картирования головного мозга»

Созданные учеными Вышки совместно с медиками нейроинтерфейсы позволяют установить контакт с головным мозгом и декодировать его сигналы. Их применение создает возможности для стимуляции мозговой активности, восстановления и нормализации мышечного контроля пациентов, перенесших инсульт, инфаркт или страдающих иными неврологическими заболеваниями, а также способствует реабилитации людей с черепно-мозговыми травмами и потерей конечностей. О работе Центра биоэлектрических интерфейсов Института когнитивных нейронаук НИУ ВШЭ рассказывает его директор Алексей Осадчий.

Исследователи НИУ ВШЭ представили новую архитектуру нейронных сетей, понимающую симметрии мира

Сотрудники Лаборатории геометрической алгебры и приложений НИУ ВШЭ разработали новую архитектуру нейронных сетей, которая может ускорить и упростить анализ данных в физике, биологии и инженерии. Свое решение ученые представили 16 июля в Ванкувере на ведущей международной конференции по машинному обучению ICML 2025. Текст статьи и исходный код выложены в открытый доступ.