Новые модели изучения заболеваний: от чашки Петри до органов-на-чипе
Биологи из НИУ ВШЭ совместно с исследователями из НМИЦ АГП им. В.И. Кулакова используют новейшие микрофлюидные технологии для изучения преэклампсии — одного из самых опасных осложнений беременности, которое угрожает жизни и здоровью матери и ребенка. В статье, опубликованной в BioChip Journal, они рассмотрели современные клеточные модели, включая передовые технологии «плацента-на-чипе», позволяющие глубже понять механизмы заболевания и разработать эффективные лекарства.
Традиционный способ тестирования медицинских препаратов — проверка их безопасности и эффективности сначала на животных, а затем на добровольцах. Клинические испытания — процесс длительный, дорогостоящий и строго регламентированный. Но даже при соблюдении всех мер предосторожности порой происходят несчастные случаи.
Один из самых известных произошел в 2006 году в Великобритании во время тестирования препарата TGN1412 для лечения лейкемии и аутоиммунных заболеваний. Согласно протоколу испытаний, двое добровольцев получили плацебо, а шестеро — одну пятисотую дозы лекарства, которую до этого успешно испытали на животных. Уже через час испытуемые почувствовали себя плохо: их мучали приступы удушья, рвота, жар, головная и мышечная боль, они начали терять сознание, а двое добровольцев впали в кому. У них развились тяжелейшие отеки, а один пациент настолько раздулся, что журналисты окрестили его человеком-слоном. К счастью, всех участников эксперимента тогда удалось спасти, но их здоровью был нанесен серьезный ущерб.
Позже выяснилось, что причиной трагедии стало наличие у человека субпопуляции иммунных клеток со специфическими рецепторами, которых нет у животных. Именно они вызвали цитокиновый шторм вместо того, чтобы контролировать иммунный ответ и снимать воспаление. Это было невозможно предположить на этапе клинических испытаний. Однако одну ошибку ученые все же допустили: они ввели препарат сразу всем пациентам, вместо того чтобы вводить его последовательно с интервалом в два часа. В этом случае жертвой трагедии мог бы стать только один испытуемый.
Но даже когда тестирование проходит успешно, в клинических испытаниях есть проблема: чаще всего участниками становятся взрослые без серьезных проблем со здоровьем (кроме основного заболевания). А принимать лекарство в итоге может понадобиться всем: детям, беременным женщинам, людям старшего возраста и пациентам с хроническими заболеваниями. Для разных групп людей необходимы разные дозировки, которые нужно правильно рассчитать. Кроме того, есть индивидуальные реакции организма: аллергии или другие особенности. Даже при низкой вероятности побочных эффектов, например 0,1%, на каждую тысячу человек будет один пострадавший.
Сегодня существует альтернатива испытаниям на животных. Ученые научились создавать модели человеческих органов и даже систем органов на маленькой пластине размером с монетку. Такая технология получила название орган-на-чипе. Визуально легкие, печень или кишечник, которые выращиваются на чипе, совсем не похожи на настоящие. Сам чип изготавливается из пластика, стекла или кремния. В нем создаются микроканалы разной длины и размера, которые разделяют или смешивают потоки жидкостей. Таким образом моделируется среда и процессы, происходящие в тканях и органах человека, например циркуляция крови. Еще одно преимущество подобных моделей — возможность персонализировать лечение, ведь органы на чипе можно создать из клеток пациента.
Как ученые исследуют заболевания и тестируют препараты
Чашка Петри
Старый, хорошо известный способ культивирования клеток в лаборатории. Клетки формируют монослой на чашке Петри и растут среди себе подобных. Они не взаимодействуют с другими видами клеток. Недостаток этого метода в том, что лабораторная жизнь клеток в чашке Петри лишь отдаленно напоминает реальную среду и не отражает процессы, происходящие в организме.
Клеточные линии в трехмерном пространстве
Трехмерные клеточные культуры — это компактные скопления клеток, которые, в отличие от обычных «плоских» культур, растут во всех направлениях, формируя объемные структуры. Важнейшим компонентом трехмерных культур является внеклеточный матрикс — трехмерная сеть природных или искусственных молекул, которая обеспечивает механическую поддержку клеток и регулирует их поведение. Преимущество метода — возможность изучать клетки в трехмерной среде, что больше напоминает их жизнь в организме. Однако есть и минусы: таким моделям недостает кровеносных сосудов с потоком крови, иммунных клеток и имитации взаимодействия разных тканей и органов. В результате молекула, «успешная» на клеточной культуре, может не давать нужного эффекта для целого органа и тем более человека.
Испытания на животных
Грызуны, свиньи или другие животные — это целый организм, во многом схожий с человеческим, поэтому они нередко выступают объектом исследований и экспериментов. Но и у этого метода есть недостатки: организм животного все же отличается от человеческого, и результаты испытаний не всегда показательны (трагедия при тестировании препарата TGN1412 — яркий тому пример). Кроме того, есть этические вопросы.
Чипы (микрофлюидные технологии)
Технология развивается с 2010-х годов. Орган-на-чипе — трехмерная структура, в которой одновременно проходит несколько процессов, почти как в реальном организме. Чипы позволяют моделировать движение жидкостей (например, крови), а также имитировать физические воздействия (такие, как сердечные сокращения). Кроме того, на чипах можно создать несколько слоев клеток разных типов, а при помощи пористой структуры обеспечить передачу сигналов между ними. В настоящее время на чипах успешно моделируются и изучаются такие органы, как легкие, печень, почки, кишечник, сердце, а также кожа, кости.
Биологи из НИУ ВШЭ совместно с исследователями из НМИЦ АГП им. В.И. Кулакова используют микрофлюидные технологии для изучения преэклампсии. Это опасное осложнение затрагивает около 8% всех беременностей в мире. Преэклампсия начинает проявляться только на поздних сроках беременности — чаще всего высоким артериальным давлением, белком в моче и нарушениями функции органов. Несмотря на десятилетия исследований, точные причины заболевания остаются не до конца изученными, но ученые полагают, что истоки надо искать на этапе формирования плаценты.
Когда начинается беременность, эмбрион имплантируется в стенку матки, и формируется плацента. Чтобы ребенок питался стабильно вне зависимости от самочувствия матери, сосуды должны всегда оставаться примерно одного просвета и давать стабильный кровоток. Для этого специальные клетки, которые составляют часть эмбриона — трофобласт, — проникают в толщу стенки матки и находят эти сосуды.
Евгений Князев
«Формально это очень похоже на инвазию опухоли. Особые клетки эмбриона, как метастазы, проникают в ткани матки и покрывают сосуды изнутри. Поскольку эти клетки другого происхождения, чем сосудистые, они не реагируют на изменения, происходящие с мамой», — объясняет первый автор исследования, заведующий Лабораторией молекулярной физиологии факультета биологии и биотехнологии НИУ ВШЭ Евгений Князев. Если по каким-то причинам это происходит не до конца, сосуды начинают реагировать на различные сигналы, изменяя свой просвет, и плацента выделяет вещества, которые негативно влияют на состояние матери и плода.
Несмотря на долгие годы исследований, не существует универсального метода лечения преэклампсии, а терапия направлена в основном на управление симптомами — снижение артериального давления, поддержание работы органов. Одним из главных препятствий в разработке терапии является сложность изучения патогенеза, то есть механизма развития болезни: плацента — уникальный и временный орган, а эксперименты на беременных невозможны по этическим причинам. Животные модели, в частности грызуны, которые оказались наиболее близки людям, не воспроизводят ключевые особенности человеческой плацентации. Поэтому исследователи обращаются к клеточным моделям.
Технология «плацента-на-чипе» позволяет моделировать кровоток и обмен веществ между матерью и плодом в условиях, близких к реальным. Развитие технологий позволило ученым воспроизводить ключевые процессы заболевания, включая момент формирования плаценты. «Особую ценность представляют модели, которые позволяют имитировать ключевые характеристики преэклампсии — недостаточную инвазию трофобласта, сосудистую дисфункцию, — отмечает Евгений Князев. — Это позволяет нам не только наблюдать патологический процесс, но и искать способы его корректировки».
На первом этапе изучения преэклампсии необходимо создать модель для оценки проницаемости, что важно, например, для подбора лекарств. Это дает возможность понять, можно ли их применять при беременности. Второй этап — создание модели с человеческими клетками, чтобы оценить развитие заболевания и индивидуальные риски. Это особенно важно для женщин с высоким риском осложнений, в том числе при ЭКО или отягощенной наследственности. Такие подходы откроют путь к скринингу потенциальных препаратов, предсказанию течения беременности и индивидуализированным стратегиям вмешательства.
Авторы подчеркивают, что моделирование преэклампсии, а также других заболеваний — не просто академическая задача. Это важный элемент трансляционной медицины, которая стремится как можно быстрее перенести знания из лаборатории в клинику. В будущем чиповые технологии могут быть объединены с анализом больших данных, ИИ и автоматизированными платформами тестирования лекарств.
Работа выполнена при поддержке Программы фундаментальных исследований НИУ ВШЭ в рамках проекта «Центры превосходства», а также при поддержке Российского научного фонда (грант 24-14-00382).
Вам также может быть интересно:
Исследователи НИУ ВШЭ ответят на вызовы развития городского транспорта
В НИУ ВШЭ стартовало масштабное исследование общественного транспорта российских городов в рамках стратегического технологического проекта «Национальный центр социально-экономического и научно-технологического прогнозирования». По итогам проекта будет сформирована динамическая база данных для четырех видов транспорта: метро, трамваев, троллейбусов и автобусов.
Стартует новый норматив технологической грамотности ТехноГТО «Искусственный интеллект»
Открыт новый норматив технологической грамотности ТехноГТО по направлению «Искусственный интеллект», разработанный совместно с Академией искусственного интеллекта для школьников Благотворительного фонда Сбербанка «Вклад в будущее». Проект ТехноГТО является частью Национальной технологической олимпиады (НТО) и реализуется Кружковым движением НТИ совместно с президентской платформой «Россия — страна возможностей» и Движением Первых при поддержке НИУ ВШЭ и Росмолодежи.
НИУ ВШЭ начал разработку отечественных технологий связи 6G на базе субтерагерцовой микрорадиоэлектроники
В Высшей школе экономики стартовали масштабные научно-инженерные работы по созданию отечественных технологий для перспективных систем связи шестого поколения (6G). Работы ведутся командой стратегического технологического проекта «Комплекс технологий доверенных систем связи 6G», реализуемого в рамках программы «Приоритет-2030».
Как продлить человеческую жизнь и активное долголетие
Исследования молекулярных механизмов долголетия дают возможность изучить вероятность существенного увеличения продолжительности жизни, в том числе активного долголетия, когда пожилые люди сохраняют трудоспособность и социальные связи. О деятельности Лаборатории исследований молекулярных механизмов долголетия «Вышка.Главное» побеседовала с ее руководителем Максимом Шкурниковым.
Пространство экономических экспериментов: как прошел воркшоп для молодых исследователей
В начале сентября обновленная Лаборатория поведенческой экономики и финансов (ЛПЭФ) провела первый воркшоп для молодых исследователей. Главной особенностью стала опора каждого доклада на результаты лабораторных экономических экспериментов. В частности, ученые рассказали о том, что люди считают справедливой сделкой, как лучше мотивировать сотрудников и как гены влияют на желание сотрудничать и помогать другим. Все заинтересованные студенты и аспиранты были приглашены к сотрудничеству с лабораторией.
Вышка исследует потребности глухих
В последнее воскресенье сентября в мире традиционно отмечается День глухих. В этом году факультет социальных наук (ФСН) Высшей школы экономики присоединился к празднику и совместно с Московской городской организацией Всероссийского общества глухих (МГО ВОГ) запустил исследование потребностей глухих и слабослышащих москвичей в социальных услугах и доступности среды.
НИУ ВШЭ и компании-партнеры скоординировали подходы к подготовке специалистов топ-уровня в сфере ИИ
В НИУ ВШЭ прошла встреча с представителями Сбера, Яндекса и VK для согласования подходов к подготовке специалистов топ-уровня в сфере искусственного интеллекта. В частности, договорились о регулярном обновлении образовательных программ с учетом новейших решений и разработок компаний-партнеров. Участники встречи обсудили текущий статус проекта, содержание образовательных программ и механизмы взаимодействия для обеспечения достижения показателей эффективности созданного в университете Центра организации обучения студентов для топ-специалистов в сфере искусственного интеллекта НИУ ВШЭ.
«Мы ищем там, где много неизвестного»
Вычислительные методы анализа древних и современных геномов позволяют исследовать процесс формирования генетического разнообразия популяций, изучать историю их перемешиваний и миграций, прослеживать формирование адаптации к окружающей среде. Международная лаборатория вычислительной и статистической геномики НИУ ВШЭ использует математические подходы и генетические данные для решения широкого спектра задач в различных областях — от антропологии и эпидемиологии до криминалистики. Новостная служба «Вышка.Главное» побеседовала с заведующим лабораторией Владимиром Щуром о ее работе.
В Высшей школе экономики открылась межфакультетская Музейная лаборатория
Вышка запустила межфакультетскую Музейную лабораторию, которая станет устойчивым центром экспертной поддержки в сфере музейного дела. Ее миссия связана с изменением современных моделей восприятия культуры и трансформацией институциональной среды. Лаборатория специализируется на модернизации музейных практик и повышении престижа музеев, формируя пространство для профессионального диалога и внедрения инноваций.
Физики предложили новый механизм усиления сверхпроводимости с помощью «квантового клея»
Команда исследователей с участием сотрудников МИЭМ ВШЭ показала, что дефекты в материале могут не снижать, а, наоборот, усиливать сверхпроводимость. Это возможно благодаря взаимодействию дефектных и более чистых областей, которое образует «квантовый клей» — однородную компоненту, связывающую разрозненные сверхпроводящие участки в единую сеть. Расчеты подтвердили, что такой механизм может помочь в создании сверхпроводников, работающих при более высоких температурах. Исследование опубликовано в журнале Communications Physics.