We use cookies in order to improve the quality and usability of the HSE website. More information about the use of cookies is available here, and the regulations on processing personal data can be found here. By continuing to use the site, you hereby confirm that you have been informed of the use of cookies by the HSE website and agree with our rules for processing personal data. You may disable cookies in your browser settings.

  • A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Russian Scientists Develop New Compound for Treating Aggressive Tumours

Russian Scientists Develop New Compound for Treating Aggressive Tumours

© iStock

A team of Russian researchers has synthesised a novel compound for boron neutron capture therapy (BNCT), a treatment for advanced cancer that uses the boron-10 isotope. The compound exhibits low toxicity, excellent water solubility, and eliminates the need for administering large volumes. Most importantly, the active substance reaches the tumour with minimal impact on healthy tissues. The study was published in the International Journal of Molecular Sciences shortly before World Cancer Day, observed annually on February 4.

Boron neutron capture therapy (BNCT) is an advanced cancer treatment that leverages the properties of the boron-10 isotope. The method involves first saturating tumour cells with boron-10, followed by irradiation with thermal neutrons. This triggers a nuclear reaction that selectively destroys cancer cells while sparing healthy tissue. Thus, the treatment success largely depends on the compound's ability to effectively deliver boron-10 to the tumour and maintain the necessary boron concentration.

A team of scientists from the HSE Faculty of Chemistry, the Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, and the N.N. Blokhin National Medical Research Centre of Oncology has developed three compounds that combine the closo-dodecaborate anion with amino acids containing a side-chain amino group. The molecules are structurally similar to natural amino acids, allowing them to 'trick' the body's transport systems into capturing and delivering them to cells, including cancer cells. This makes the substance effective at targeting tumours, where it accumulates. 

Figure 1. Structure of the compound
© HSE University

One of the compounds demonstrated low toxicity, with the half-lethal dose (LD50) for experimental animals ranging from 150 to 300 mg per kilogram of body weight. In experiments, the compound not only demonstrated the ability to accumulate boron in tumour tissues but also confirmed its effectiveness in animals. When administered to laboratory mice, the boron concentration in melanoma tumour cells was six times higher than in healthy tissues after 45 minutes.

The compound can exist in two forms depending on the pH level. The first form is a sodium salt, which is highly soluble in water under conditions close to physiological pH, making it convenient for therapeutic use. The second form occurs upon acidification, when the compound transforms into an insoluble internal salt useful for obtaining a medically pure product during the stages of synthesis, isolation, and purification.

Margarita Ryabchikova

'The aim of the study was to reduce toxicity and simplify the compound purification process, building on data from previous research. As a result, three new compounds were synthesised. One of them exhibited optimal characteristics: it does not cause significant side effects when administered intravenously and dissolves well in water, setting it apart from existing therapeutic drugs,' explains study author Margarita Ryabchikova, a third-year student at the HSE Faculty of Chemistry. 'We aimed not only for high efficacy but also for production convenience. The developed method can be easily scaled to produce the required quantities of the product while remaining economically viable.'

The study demonstrated that the new compound accumulates more effectively in the tissues of certain types of tumours compared to the currently used drug. This is an important step toward developing a safer and more accessible therapy. The research is still in its early stages, but this development has the potential to significantly improve cancer treatment outcomes and broaden the applications of boron neutron capture therapy in the fight against various types of tumours.

See also:

Group and Shuffle: Researchers at HSE University and AIRI Accelerate Neural Network Fine-Tuning

Researchers at HSE University and the AIRI Institute have proposed a method for quickly fine-tuning neural networks. Their approach involves processing data in groups and then optimally shuffling these groups to improve their interactions. The method outperforms alternatives in image generation and analysis, as well as in fine-tuning text models, all while requiring less memory and training time. The results have been presented at the NeurIPS 2024 Conference.

When Thoughts Become Movement: How Brain–Computer Interfaces Are Transforming Medicine and Daily Life

At the dawn of the 21st century, humans are increasingly becoming not just observers, but active participants in the technological revolution. Among the breakthroughs with the potential to change the lives of millions, brain–computer interfaces (BCIs)—systems that connect the brain to external devices—hold a special place. These technologies were the focal point of the spring International School ‘A New Generation of Neurointerfaces,’ which took place at HSE University.

New Clustering Method Simplifies Analysis of Large Data Sets

Researchers from HSE University and the Institute of Control Sciences of the Russian Academy of Sciences have proposed a new method of data analysis: tunnel clustering. It allows for the rapid identification of groups of similar objects and requires fewer computational resources than traditional methods. Depending on the data configuration, the algorithm can operate dozens of times faster than its counterparts. Thestudy was published in the journal Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia.

Researchers from HSE University in Perm Teach AI to Analyse Figure Skating

Researchers from HSE University in Perm have developed NeuroSkate, a neural network that identifies the movements of skaters on video and determines the correctness of the elements performed. The algorithm has already demonstrated success with the basic elements, and further development of the model will improve its accuracy in identifying complex jumps. 

Script Differences Hinder Language Switching in Bilinguals

Researchers at the HSE Centre for Language and Brain used eye-tracking to examine how bilinguals switch between languages in response to context shifts. Script differences were found to slow down this process. When letters appear unfamiliar—such as the Latin alphabet in a Russian-language text—the brain does not immediately switch to the other language, even when the person is aware they are in a bilingual setting. The article has been published in Bilingualism: Language and Cognition.

HSE Experts Highlight Factors Influencing EV Market Growth

According to estimates from HSE University, Moscow leads in the number of charging stations for electric vehicles in Russia, while Nizhny Novgorod ranks first in terms of charging station coverage, with 11.23 electric vehicles per charging station, compared to 14.41 in Moscow. The lack of charging infrastructure is one of the key factors limiting the growth of the electric vehicle market. This is stated in the study titled ‘Socio-Economic Aspects of Introducing Electric Vehicles in Commercial Transportation’ conducted by experts from the Institute of Transport Economics and Transport Policy Studies at HSE University.

Machine Learning Links Two New Genes to Ischemic Stroke

A team of scientists from HSE University and the Kurchatov Institute used machine learning methods to investigate genetic predisposition to stroke. Their analysis of the genomes of over 5,000 people identified 131 genes linked to the risk of ischemic stroke. For two of these genes, the association was found for the first time. The paper has been published in PeerJ Computer Science.

First Digital Adult Reading Test Available on RuStore

HSE University's Centre for Language and Brain has developed the first standardised tool for assessing Russian reading skills in adults—the LexiMetr-A test. The test is now available digitally on the RuStore platform. This application allows for a quick and effective diagnosis of reading disorders, including dyslexia, in people aged 18 and older.

Low-Carbon Exports Reduce CO2 Emissions

Researchers at the HSE Faculty of Economic Sciences and the Federal Research Centre of Coal and Coal Chemistry have found that exporting low-carbon goods contributes to a better environment in Russian regions and helps them reduce greenhouse gas emissions. The study results have been published in R-Economy.

Russian Scientists Assess Dangers of Internal Waves During Underwater Volcanic Eruptions

Mathematicians at HSE University in Nizhny Novgorod and the A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences studied internal waves generated in the ocean after the explosive eruption of an underwater volcano. The researchers calculated how the waves vary depending on ocean depth and the radius of the explosion source. It turns out that the strongest wave in the first group does not arrive immediately, but after a significant delay. This data can help predict the consequences of eruptions and enable advance preparation for potential threats. The article has been published in Natural Hazards. The research was carried out with support from the Russian Science Foundation (link in Russian).